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Abstract— Robust 3D human segmentation is crucial for
the safe operation of mobile robots, such as autonomous
vehicles and drones, in real-world environments. However,
state-of-the-art segmentation models like Human3D are
predominantly trained on dense, synthetic indoor datasets and
struggle to generalize to outdoor settings, where robots rely on
sparse depth data from sensors like LiDAR. In this work, we
present Sparse-H3D, a framework that adapts transformer-
based 3D human segmentation to operate effectively on
sparse outdoor point clouds. Our approach combines two
strategies: (1) fine-tuning a Human3D transformer model on
LiDAR-style downsampled data to enhance its performance
on sparse inputs, and (2) developing preprocessing pipelines
to upsample and align sparse outdoor LiDAR data, making
it more compatible with existing dense-data-trained models.
Experiments across both synthetic (Egobody) and real-
world (SynLiDAR) datasets demonstrate that these methods
significantly improve segmentation accuracy in sparse, outdoor
scenarios. Ablation studies further highlight the importance
of input density and orientation alignment, and our results
show that domain-specific fine-tuning, together with intelligent
preprocessing, can bridge the gap between indoor-trained
models and real-world outdoor applications.

I. INTRODUCTION

Robust 3D human segmentation is essential for enabling
mobile robot such as autonomous vehicles and drones to
operate safely in real-world environments. Existing state-
of-the-art models, like Human3D [human3d], are primarily
trained on dense, synthetic indoor data and struggle to
generalize to outdoor settings, where robots must rely on
sparse depth information from sensors such as LiDAR. This
project, Sparse-H3D, aims to address these limitations by
adopting two approaches. First, fine-tuning a transformer-
based segmentation network for human detection using
sparse depth data, and second, designing pre-processing
methods to reduce sparsity in outdoor Lidar data and allow
existing Human3D models to segment humans.
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II. MOTIVATION

First responders face challenges with visibility when nav-
igating smoke-filled environments during emergencies like
fires or industrial accidents. But, traditional RGB-based
perception systems fail in these conditions, creating an urgent
need for thermal imaging and RaDAR-based solutions that
can operate through perceptual degradation. As part of our
CMU AirLab capstone project, we developed an autonomous
drone system to address this gap, using stereo thermal cam-
eras to generate 3D maps in perceptually degraded scenarios.

The key technical hurdle lies in adapting human segmen-
tation models to sparse point clouds from thermal disparity
calculations – data fundamentally different from the dense
Depth inputs used by state-of-the-art models like Human3D.
While Human3D’s synthetic training pipeline (which simu-
lates Kinect sensor noise via SimKinect [SimKinect]) shows
the viability of sensor-aware domain adaptation, no equiva-
lent work exists for the sparse 3D data produced by our
first-responder drone sensor.

Our work bridges this gap through two strategies:
1) Sensor simulation for training: Inspired by Hu-

man3D’s SimKinect, we developed preprocessing pipelines
to convert dense synthetic data into sparse thermal/LiDAR-
like point clouds, enabling targeted model fine-tuning.

2) Real-data enhancement: For field deployment, we
designed upsampling and alignment techniques to improve
segmentation reliability on raw sensor outputs, as demon-
strated by mmParse’s success [wang2023human] in parsing
sparse mmWave radar data through smoke.

This dual approach ensures our system can localize hu-
mans while leveraging the learnings from existing HUman3D
model, while providing a blueprint for adapting indoor-
trained models to outdoor robotic platforms. By closing the
sparsity structure gap for sparse thermal/LiDAR data, we aim
to enhance situational awareness in disaster scenarios where
conventional vision systems fail.

Fig. 1. First responder drone



III. RELATED WORK

Human Segmentation in Point Clouds Human3D is a pi-
oneering work in the field of 3D human segmentation, which
introduced the first multi-human body segmentation model
that operates directly on 3D scenes. This model addresses the
challenge of segmenting humans in cluttered 3D environ-
ments by leveraging synthetic data for pre-training, a task
that has been limited by the scarcity of annotated training
data for humans interacting with 3D scenes. But until now,
the efficacy of this approach has only been proven for in-
door environments using the Egobody [zhang2022egobody]
dataset.

Fig. 2. Source: https://human-3d.github.io/assets/Human3D paper.pdf

Outdoor 3D Human Segmentation In the context
of outdoor data, work on 3D human body segmentation
has been very limited. For instance, papers like LidPose
[zhang2022egobody], present a vision-transformer based
method for real-time human skeleton estimation in sparse
LiDAR point clouds. This approach transforms NRCS Li-
DAR point cloud data into a 2D representation, enabling
skeletal estimation for pose detection. While this is good for
real-time pose detection applications, it does not help with
accurate point cloud segmentation.

Datasets of LiDAR Point Clouds with Humans in
Outdoor Setting Recent developments with datasets like
SLOPER4D [Dai˙2023˙CVPR], equips us with relevant
outdoor human point cloud data with annotations to train
good segmentation models. Older datasets like nuScenes
[nuscenes] may also help with additional data if necessary.

Fig. 3. Source: http://www.lidarhumanmotion.net/sloper4d/

Fig. 4. Source: https://www.nuscenes.org/nuscenes

Fig. 5. Source: https://www.nuscenes.org/nuscenes

SynLiDAR [xiao2022transfer] is a large-scale, high-
fidelity synthetic dataset specifically designed for au-
tonomous driving scenarios and includes dense point clouds
with rich semantic annotations. While SynLiDAR itself is not
human-centric, its high density and diversity in scenes make
it a useful candidate for pretraining or augmenting human
segmentation models in outdoor contexts. In our approach,
we propose to upsample point clouds from SynLiDAR using
point cloud processing techniques (e.g., interpolation or
learning-based super-resolution) to increase density, and then
run inference using the original Human3D model, which
was trained on dense indoor depth maps. This allows us
to evaluate the generalizability of Human3D in outdoor
scenarios with synthetic yet dense LiDAR data.

Fig. 6. Sample Point Cloud from SynLidar

Our work builds upon these advancements, particularly
leveraging the model performance gained with the syn-
thetic data generation approach of Human3D, while focusing
specifically on sparse outdoor data. We aim to adapt and
extend existing models to better handle the unique chal-
lenges presented by large-scale outdoor point clouds, such
as varying densities, occlusions, and diverse human poses in
complex environments.

https://human-3d.github.io/assets/Human3D_paper.pdf
http://www.lidarhumanmotion.net/sloper4d/
https://www.nuscenes.org/nuscenes
https://www.nuscenes.org/nuscenes


IV. METHODOLOGY

A. Preprocessing

To adapt existing 3D segmentation models trained on
dense indoor point clouds to the sparse and noisy nature of
outdoor LiDAR data, we developed several pre-processing
techniques. These serve two main purposes: (1) simulate
LiDAR sparsity on dense indoor datasets to fine-tune models
appropriately, and (2) enhance sparse outdoor LiDAR data
to improve segmentation accuracy.

Fig. 7. Original Ego body dataset

1) For Training: Pre-processing Egobody dataset to sim-
ulate LiDAR-like behavior:

a) Voxel-Based Downsampling: For simulating sparse
input from high-density indoor data, we used voxel grid
filtering. The input point cloud is divided into a regular
3D voxel grid, and one representative point is selected per
occupied voxel. This method reduces point density uniformly
and emulates reduced resolution while maintaining overall
scene structure.

Fig. 8. Voxel-based Downsampling on Egobody

b) LiDAR-like Downsampling: To mimic the sampling
pattern of a spinning LiDAR, we implemented a custom
channel-based radial slicing algorithm. The method bins
points based on their vertical height (y-axis) into a fixed
number of channels, and further filters them by angular slices
in the x-z plane (simulating azimuth bins). This approach
models real LiDAR behavior more accurately than voxel
grids and retains the sparsity and anisotropy characteristics
of outdoor point clouds.

Fig. 9. Lidar-like Downsampling on Egobody

Fig. 10. Lidar-like Downsampling on Egobody

2) Upsampling Sparse LiDAR Data: To improve segmen-
tation on inherently sparse outdoor LiDAR point clouds,
we designed a lightweight upsampling technique. Starting
from the original point cloud, we applied random per-point
translations to generate two shifted copies of the data. These
augmentations were stacked together with the original to
increase point density. A statistical outlier removal filter was
then applied to remove noise introduced during upsampling.
Importantly, instead of applying a single global transfor-
mation, each point was randomly shifted independently,
better simulating realistic perturbations while avoiding mode
collapse in spatial features.

Fig. 11. Original SynLidar point cloud



Fig. 12. Upsampled SynLidar point cloud

B. Fine-Tuning

To adapt the Human3D segmentation model to sparse,
LiDAR-like outdoor point clouds, we fine-tuned the pre-
trained transformer model provided by the original authors.
The model was initialized using their publicly available
checkpoints, which had been trained on dense synthetic
indoor data from the Egobody dataset.

We then fine-tuned this model on the original Egobody
dataset, after applying our custom LiDAR-like downsam-
pling strategy to all training and validation samples. This
downsampling simulated a 32-channel rotating LiDAR to
better match the sparsity characteristics of outdoor point
clouds.

Key aspects of the fine-tuning process included:
• Checkpoint Initialization: We used the pretrained Hu-

man3D weights as a starting point to leverage prior
knowledge of human geometry and structure.

• LiDAR-style Input: All inputs during training were
preprocessed using our LiDAR-like downsampling tech-
nique, limiting point cloud density while preserving
vertical and azimuthal structure.

• Positional Encoding Adaptation: We retained the orig-
inal transformer architecture and positional encodings,
relying on the fine-tuning phase to implicitly adapt to
the new spatial distribution.

• Loss Function and Training: The model was optimized
using cross-entropy loss. We train the model for 23
epochs on randomly extracted 2000 point clouds while
lowering the learning rate and freezing the first 20
layers.

• Validation: Model performance was monitored using a
held-out subset of the down-sampled Egobody data to
ensure generalization.

This process allowed the model to retain high-level geometric
priors from dense data while adapting to the structured
sparsity of LiDAR-like observations.

V. EXPERIMENTS

To evaluate the generalization capability of our model and
understand the impact of different data preprocessing steps,
we conducted a series of experiments using both the original
and fine-tuned checkpoints of the pre-trained model from
Human3D. Our experimental design focused on two datasets:
the LiDAR outdoor SynLidar dataset and the indoor EgoBody
dataset, with various preprocessing pipelines applied to both.

We began by performing inference using the original,
unmodified checkpoint and different confidence thresholds,
on the following data variants:

• SynLidar (raw): The model was tested directly on the
LiDAR data without any preprocessing.

• EgoBody (voxel-downsampled): The input was voxel
downsampled to mimic sparse LiDAR-like observations.

• EgoBody (LiDAR-downsampled): We applied LiDAR-
style depth-based downsampling to bring the dense Ego-
Body data closer to real-world LiDAR characteristics.

Next, to better match the EgoBody domain, we created a
processed version of SynLidar by

• Upsampling the point cloud to decrease sparsity
• Cropping the original scene to extract a smaller room-

sized scene with humans
• Rotating the point clouds about the global X-axis to

match the orientation of the egobody dataset.
• Translating the point cloud such that the origin of the

world coordinate system falls in the center of the point
cloud.

These transformations helped us modify SynLidar point
clouds to align with the distribution of point clouds in
the Egobody dataset. We then ran inference and visually
evaluated the performance of the original checkpoint on this
processed SynLidar data.

To isolate the impact of each transformation step, we per-
formed ablation experiments by removing one preprocessing
operation (upsampling, cropping, rotation, translation) at a
time. These experiments revealed that rotation alignment
and upsampling are essential for model performance, while
cropping and translation had negligible effects. This suggests
that the original Human-3D model is not fully rotation
invariant and requires dense data.

Finally, we fine-tuned the model on LiDAR-downsampled
EgoBody data, initializing from the original checkpoint. We
then inferred the fine-tuned model on:

• SynLidar (raw)
• LiDAR-downsampled EgoBody

These experiments were designed to test the model’s
adaptability to synthetic data, the influence of domain shift,
and the effectiveness of downsampling and fine-tuning in
closing the domain gap between synthetic and real-world
data.

A. Original Model Inference on SynLidar data

We run the original model on SynLidar data to check
the base model performance. It can be observed from the
inference result image that the model was not able to segment
the humans from the point cloud, indicating that the Lidar
data is too sparse for the model.



Fig. 13. Original Model Inference on SynLidar Data

B. Original Model Inference on Voxel Downsampled EgoB-
ody data

We downsample the EgoBody dataset based on voxel
methods. The model did not segment the humans since the
point cloud is too sparse.

Fig. 14. Original Model Inference on Voxel Downsampled EgoBody data

C. Original Model Inference on Lidar downsampled Ego-
body data

We downsample the EgoBody dataset by retaining point
clouds in channels. The model cannot segment the humans
as the data is too sparse.

Fig. 15. Enter Caption

D. Original Model Inference on Rotation, Translation, Den-
sity and Scale Processed SynLidar Data

We processed the SynLidar Dataset to be closer to the
EgoBody dataset by rotating, cropping, and increasing the
density of the point cloud. The resulting point clouds is
visualized in the following image.

Fig. 16. Rotation, Translation, Density, and Scale processed SynLidar Data

We run the original Human-3D model on the new pro-
cessed data, and we can see that the model is able to segment
the human closest to the Lidar sensor.

Fig. 17. Original Model Inference on Processed SynLidar Data

E. Finetuned Model Inference on SynLidar data

The Human3D model was unable to segment humans from
the original point clouds of the SynLidar dataset. However,
after fine-tuning, the new model is able to segment one
humans with relatively higher density from the lidar point
cloud, as seen in the following figure.

Fig. 18. Finetuned Model Inference on Original SynLidar Data

F. Finetuned Model Inference on Lidar downsampled Ego-
body data

When we previously ran the inference on a point cloud
from egobody that has been downsampled using a lidar-like
downsampling, we observed that the original human3d model
was not able to segment any humans. However, after fine-
tuning the model using downsampled point clouds, the model
can segment humans successfully, even from sparse point
clouds, as the one shown in the following figure.



Fig. 19. Inference of fine-tuned model on lidar-like downsampling

G. Finetuned Model Inference on Upsampled SynLidar Point
Cloud

We combine the two approaches - upsampling original
LiDAR data to reduce sparsity and fine-tuning human3d
on sparse data. The inference results from this pipeline are
shown in the following figure. One human in the point cloud
has been successfully segmented by the model.

Fig. 20. Inference of fine-tuned model on up-sampled LiDAR data

VI. EVALUATION

We evaluated the Mask3D model using the author’s of-
ficial pretrained checkpoint on two datasets: EgoBody and
a LiDAR downsampled version of EgoBody. Additionally,
we also included performance results of our own fine-
tuned checkpoints on the downsampled dataset to assess
improvements.

A. Baseline Evaluation on EgoBody Dataset

On the high-resolution original dataset, the Mask3D
checkpoint demonstrates excellent performance in semantic
instance segmentation. Table I presents a summary of key
evaluation metrics. The model achieves a high average
precision (AP) across thresholds and strong intersection-
over-union (IoU) values, indicating reliable predictions and
accurate spatial localization. All loss terms remain low,
confirming stable optimization.

B. Evaluation on LiDAR-like Dataset (32-Channels)

In contrast, when evaluated on the downsampled dataset,
the model exhibits a dramatic performance degradation. The
human segmentation AP drops by over 90%, and IoU for
the human class falls below 10%. These results suggest that

the pretrained Mask3D model relies heavily on the dense
geometric structure of point clouds and generalizes poorly
to sparse input data without retraining or domain adaptation.

C. Evaluation of Finetuned Model on Original Egobody
Dataset

After fine-tuning the Human3d model on sparse point
clouds, we evaluated the model on the original dense point
clouds from the Egobody dataset. We observed that the
Average Precision for human segmentation on the validation
set drops from 92.14% to 60.0%.

D. Evaluation of Fine-Tuned Checkpoints on Downsampled
Data (Our Method)

To address the limitations observed with the pretrained
checkpoint, we fine-tuned the Mask3D model on the 32-
channel downsampled dataset. The finetuning aimed to im-
prove segmentation performance under sparse sensing con-
ditions. The results of this retraining are included alongside
the baseline metrics in Table I. We observed that the Average
Precision for human segmentation on the validation set goes
up from 10% to 90.0%.

TABLE I
PERFORMANCE OF MASK3D ON EGOBODY VS. DOWNSAMPLED

EGOBODY (32-CHANNEL LIDAR-LIKE) VS. OUR METHOD

Metric EgoBody LiDAR EgoBody Our Method

val AP human 0.9214 0.0077 0.9085
val AP 25 human 0.9951 0.0547 0.9998
val AP 50 human 0.9847 0.0217 0.9946
val iou human 0.9275 0.0879 0.9048
val iou background 0.9933 0.9188 0.9896
val mean iou 0.9604 0.5034 0.9472
val loss ce 0.0245 3.3387 0.0137
val loss dice 0.1030 1.7446 0.1246
val loss mask 0.0504 1.6828 0.0630

VII. CONCLUSION

A. Processing LiDAR Data to Leverage Human Segmenta-
tion Models Trained on Dense Point Clouds

In this work, we explored the feasibility of applying the
Mask3D [Schult23ICRA] segmentation model—pre-trained
on dense indoor point clouds—to sparse outdoor LiDAR
data. Our experiments across the EgoBody and SynLiDAR
datasets showed that the original model fails to generalize
to sparse point clouds, producing poor or no segmentation
results. To address this, we applied a series of preprocessing
steps to the SynLiDAR data, including upsampling, rotation
alignment, cropping, and translation.

Through ablation studies, we determined that upsampling
the point cloud to increase density and rotating it to match
the Egobody dataset’s orientation significantly improved seg-
mentation results, even without re-training the model. These
findings highlight the model’s sensitivity to input density and
orientation, and emphasize that preprocessing plays a crucial
role in adapting dense-data-trained models to sparse LiDAR
settings.



B. Fine-tuning Human Segmentation Models on Sparse Point
Clouds of Outdoor Settings

Beyond preprocessing, we investigated the effectiveness
of fine-tuning the Human3D model on LiDAR-style sparse
point clouds. Specifically, we fine-tuned the original check-
point using a LiDAR-downsampled version of the EgoBody
dataset and then evaluated performance on both raw SynLi-
DAR and downsampled EgoBody data.

Results show that fine-tuning improves the model’s adapt-
ability to sparse inputs, allowing it to partially recover
segmentation capability on previously unsegmentable data.
While performance still lags behind results on dense in-
puts, this approach demonstrates a promising path forward:
synthetic sparse datasets like SynLiDAR, when combined
with sparse-aware fine-tuning, can help bridge the domain
gap and extend indoor-trained models to realistic outdoor
environments.

Together, these two strategies—intelligent preprocessing
and domain-specific fine-tuning—pave the way toward ro-
bust, real-world 3D human segmentation in mobile robotics
and autonomous systems.

VIII. FUTURE WORK

Training the model on original LiDAR data with point-
wise labels We attempted to simulate LiDAR-like point
clouds by processing the egobody dataset. While this ap-
proach showed promising results, a better alternative would
be to train the model on the original LiDAR point cloud that
has per-point annotations for performing human semantic or
instance segmentation.

Finetuning Mask-3D on a combination of dense and
sparse data We observed a degradation in the model’s ability
to segment humans in dense point clouds after we fine-
tuned the model on sparser point clouds, since the fine-
tuning dataset was skewed, having only sparse point clouds.
A potential method of avoiding this is to create a new dataset
for fine-tuning that is balanced in terms of the sparse and
dense point clouds.

Finetuning Human-3D on sparse point clouds While our
project aims to solve the problem of performing semantic
segmentation of humans from sparse point clouds, future
work can involve solving Multi-Human Body-Part Segmen-
tation in sparse point clouds. One possible approach is to
fine-tune Human-3D on sparse point clouds.

Introducing rotation invariance to Mask-3D and
Human-3D Through our ablation studies, we discovered
that Mask3D and Human3D require humans in the point
clouds to be aligned in a manner similar to the egobody
dataset. Future efforts to make these models rotation invariant
are worth exploring through approaches like augmenting the
training dataset with a larger range of rotations, or improving
the model architectures to better predict the rotation of
point clouds in the input example and align it to a suitable
canonical axis.
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