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Abstract— This paper presents the design and implementa-
tion of an autonomous coffee-making system using a Franka
robotic manipulator arm, aimed at advancing automation in
the food and beverage industry. The system is capable of
preparing various coffee beverages by autonomously detecting,
grasping, and pouring ingredients into a user’s mug according
to specified recipes. Key challenges addressed include careful
manipulation of ingredient cups to avoid spillage, ensuring
accurate pouring to meet quantitative requirements for each
recipe, and localizing all obstacles and the output cup to
operate in a mobility-constrained environment. To simulate
liquid handling in a controlled setting, colored beads were used
as a proxy for liquid ingredients. The methodology integrates
computer vision for output cup localization, precise grasping
strategies, and constrained trajectory planning using MoveIt,
with additional real-time feedback from a weighing scale and
force-torque sensors to ensure accurate ingredient dispensing.
A custom pouring controller was developed to map cup weight
to tilt angle and pour-stop thresholds, achieving pour accuracy
within 5 grams of the target amount and a pour success rate
exceeding 88% . The system demonstrated robust perception
and motion planning, with failures occurring only rarely.
This work provides a framework adaptable to other beverage
automation tasks, promoting use of robotics in the food and
beverage industry. Future improvements include supporting a
broader ingredient set, developing an interactive user interface,
and refining motion planning to further increase reliability and
versatility.

I. INTRODUCTION

Robotic automation is increasingly transforming the food
and beverage industry by improving efficiency, consistency,
and personalization. Among its many applications, robotic
coffee-making systems are gaining traction due to their
ability to deliver high-precision, high-volume service with
minimal human intervention. This work focuses on devel-
oping a robotic manipulator system that can prepare various
types of coffee, such as lattes, cappuccinos, and Americanos,
based on user preferences using a Franka Emika Panda arm.

To simulate liquid ingredients in a controlled and reusable
setting, we use small colored beads (BB pellets), allowing us
to focus on the mechanical and algorithmic performance of
the system without the added complexities of liquid handling.
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The task introduces several challenges: the end-effector
must maintain an upright orientation to avoid spillage, the
operating space is confined to a compact table set-up, and
the robot operates close to its base, where joint mobility is
reduced. These constraints limit the effective configuration
space and make motion planning using standard tools like
MoveIt highly unreliable in this context.

In response, we designed a lookup table-based pouring
controller that maps the input cup weight to the tilt angle
and a pour-stop output weight. Through real-world trials,
we analyzed the pour accuracy and the behavior of the
system under different input conditions. We also examine the
relationship between workspace layout, constrained motion,
and planning success.

There are multiple potential benefits of this system, It
can enhance efficiency in high-demand environments by
automating coffee-making, reducing labor costs, and ensur-
ing consistent quality. In addition, the system’s ability to
accurately mix ingredients based on user preferences can
help increase customer satisfaction by providing personalized
coffee experiences.

Beyond coffee preparation, this robotic manipulator sys-
tem can further help the beverage industry. The principles
developed here can be applied to other complex beverage
tasks such as cocktail making, further expanding automation
in restaurants and bars.

II. RELATED WORK

Previous works mainly focus on the handling and pouring
of liquid using a robotic arm. [1] proposes a multimodal
neural network, MP-Net, for robotic pouring by integrating
audio and haptic inputs. It uses a weighing scale to measure
the weight of the target container, providing ground-truth
data to train the network. The scale readings are used to ob-
tain the height of the air column in the container, facilitating
an accurate estimation of the liquid height during pouring
tasks. This method uses various sensors to develop a robust
methodology for pouring. In contrast, [2] proposes a hybrid-
pouring robot featuring a four-wheel drive omnidirectional
platform and a parallel work arm. It uses a real-time control
system combined with visual feedback to pour molten metal
into molds. The design offers flexibility and reliability in
multi-point pouring operations. This method aims to reduce
the complexity of the task by creating a specialized hardware
platform, thereby simplifying motion planning. In addition,
[3] aims to solve a more general pouring problem by assess-
ing the flow properties of the liquid. It proposes a system for
making pancakes, including both the creation of batter and
the pouring into a pan. It combines the use of haptic sensing



and robust control methods to control the pouring process,
allowing it to create pancakes of any shape. Furthermore,
[4] introduces a vision-based system for estimating liquid
volume in transparent containers. Using a two-step CNN
architecture, it accurately estimates the liquid height with
limited training data, complemented by simulation-driven
pouring techniques for small openings. [5] proposes a frame-
work for liquid perception that reduces reliance on pixel-wise
annotations by using image-level labels and Class Activation
Maps (CAM) to localize liquid regions. It leverages container
pose estimation and 3D point cloud recovery for closed-loop
robot control, validated on a novel dataset and a Franka
robot. Sun et al. provided further exploration of learning-
based pouring techniques, who developed a self-supervised
method to model pouring dynamics and generalize to new
containers, achieving high precision in pouring tasks [6].

III. METHODOLOGY

In this section, we discuss our methodology for our coffee-
making simulation. The steps are outlined in Algorithm 1 and
are elaborated on in the following. The initial arrangement
can be found in Figure 1.

Fig. 1. Hardware Setup

A. Detection and Dimension Estimation of Output Cup

We use the RealSense camera mounted on the robotic
arm to locate the coffee mug where the beverage will
be prepared. This process involves positioning the arm to
ensure that the camera captures the top view of the output
platform(weighing scale). From this vantage point, edge

Algorithm 1 Automated Coffee Making Simulation
Determine position of user coffee mug
while Ingredients Remaining do

Determine location of ingredient
Plan non-colliding path to ingredient cup
Move to ingredient cup and grasp
Plan constrained path to above destination cup
Move arm above destination cup
while Required weight not reached do

Tilt ingredient cup to fill coffee mug
end while

end while

detection computer vision algorithms are applied to the
RGB image to identify the rim of the mug as shown in
Figure 2.
Next, we use the corresponding depth data from the
localized pixels to determine physical attributes such as the
height of the cup, its distance from the vantage point, etc,
to generate a 3D cuboid volume that closely matches the
shape of the mug. Finally, using calibration parameters, we
translate this data into the global coordinate frame.

Key Applications of This Process:
1) Precise Pouring: Localizing the lid area allows accu-

rate pouring of ingredients into the target mug.
2) Collision Avoidance: Registering the 3D cylindrical

volume of the mug in the global collision check frame en-
sures that the MoveIt planner generates safe arm trajectories.

3) Quality Control: Implementing checks for minimum
lid opening area and required mug volume prevents opera-
tional errors.

Fig. 2. Localizing Output cup

B. Grasping

The ingredient cups must be picked up with a side grip
as shown in Figure 3. This means that the ”elbow” of the
arm must protrude significantly to the right side of the base,
as shown. This removed the left half of the table from
consideration as the elbow would hit the virtual walls (either
in this configuration or on the way), thus making grasping
impossible.



After requesting and receiving an expansion of the viable
robot workspace, we were only able to determine one viable
position where the ingredient cups can be grasped without
violating joint/collision constraints. To circumvent this, we
added a shelf to the workspace. The height of the shelf
allowed us to determine 3 viable input cup locations. We
placed ingredient cups at these locations and recorded joint
angles and poses for pre-grasp poses with the end-effector
slightly offset to the cup. Since these cups would be placed in
the same position every time, we decided to try simple and
repeatable approaches. We used FrankaPy’s goto joint
function to check whether we could successfully plan a
trajectory to our desired pre-grasp positions. This naively
planned a trajectory while ignoring constraints and attempted
to execute it. However, in the middle of the test, the arm
would detect a collision with a virtual wall and freeze.
Since the simplest approach did not work, we decided to
use MoveIt and its library of sophisticated planners to plan
a path that would not result in collisions with virtual walls
and other obstacles. This approach is elaborated on in the
next section.

Once the pre-grasp position has been reached, we move
the arm toward the cup and close the grippers. This results
in the cup being gripped firmly in the ”fingers” of the end-
effector.

Fig. 3. Side-Grip

C. Trajectory Planning

Once the ingredient cup is gripped, it is brought over the
coffee mug so that the ingredient can be poured into the mug
below. To achieve this, a constrained path that does not allow
the cup to tilt is planned to avoid spilling the ingredient along
the way. This path also avoids collisions in the same way as
above.

This is implemented using FrankaPy and MoveIt Com-
mander. All ingredient cups and the output setup are added
to the scene as obstacles using the add box function of the
PlanningSceneInterface class. This has been visual-
ized using Rviz as seen in Figure 4. A trajectory is planned
and executed from the current pose (ingredient cup location)
to the goal pose (near the coffee mug rim) using the plan
and execute functions of the MoveGroupCommander
class.

Fig. 4. Collision Objects

Constraints are added to the end-effector pose
during trajectory execution to ensure that the cup
remains upright throughout the motion, preventing
spills. The set path constraints function and
the OrientationConstraint moveit msgs type are
used to define and enforce this constraint during motion
planning. The virtual walls of the workstation are also added
to ensure that MoveIt does not plan trajectories outside of
FrankaPy’s constraints.

Additionally, execution monitoring is performed in real-
time using feedback from the robot through MoveIt func-
tions, allowing for potential error recovery and trajectory re-
planning if deviations occur.

D. Controlled Pouring

Once the ingredient cup is above the coffee mug, the
ingredient cup must be tilted to pour its contents into the
mug below. We have discretized the pouring process into
pour and no-pour states. In the pour state, the last joint of
the arm is actuated to tilt the cup to the desired pour angle.
In the no-pour state, the cup will be held upright.

To build feedback into the system, we use 2 sensors - a
weighing scale to weigh ingredients in the output cup and
Franka’s inbuilt force-torque sensor to weigh the input cup.
These inputs are used to build the logic of the pour angle
and time to pour. We created a lookup table, shown in Table
I, based on empirical data that maps the weight of the input
cup to a pour angle and a stopping offset. The stopping offset
is a subtraction from the target weight to account for the
beads being poured while the arm transitions back to the
no-pour state. The arm will begin pouring using the looked-
up pouring angle and pour until the offset target weight is
reached on the weighing scale under the output cup. We



keep the offset values high in an attempt to bias our system
to undershoot rather than overshoot.

TABLE I
LOOKUP TABLE FOR POURING ANGLE AND STOPPING OFFSET

Input Cup Weight (g) Stopping Offset (g) Pouring Angle(rad)

0 - 30 0 -1.0

30 - 50 6 -0.88

50 - 70 8 -0.88

70 - 110 8 -0.89

110 - 150 10 -0.89

After pouring the required amount of ingredients, we place
the ingredient cup in its original place and move on to the
next ingredient, if there is one, or else, we notify the user
that their coffee is prepared and return the arm to its reset
state, awaiting the following order.

E. Customer Order - User Input

We made a .yaml file with standard orders and ratios:
1) Americano - 45mL Espresso + 90mL Water
2) Latte - 50mL Espresso + 100mL Steamed Milk +

50mL Foam
3) Cappuccino - 60mL Espresso + 60mL Steamed Milk

+ 60mL Foam
These are parsed as an argument to the working script,
which accesses the .yaml file to obtain target pour weights
corresponding to each input cup. Example usage -

python3 CoffeePour.py Americano

IV. EVALUATION

We evaluate the performance of our end-to-end system
with respect to two main metrics, namely pour amount accu-
racy and pour success rate. We also evaluate our subsystems
individually - we measure success rates for the perception
and motion planning subsystems.

A. Pour Amount Accuracy

We observe the amount of ingredient poured into the cup
versus the target amount. The results can be seen (trial-wise)
in Figure 5, and summarized in Figure 6.

While the exact target amount was not always poured, the
actual amount poured was within 5g (above or below) the
target amount.

B. Spillage/Pour Success Rate

Rare cases of spillage were encountered while pouring due
to beads bouncing off the bottom of the destination mug,
clearing the rim, and landing outside. This was observed in
three out of twenty-five trials. Overall, bead spillage occurred
12% of the time. This indicates that our system has a success
rate of 88%.

Fig. 5. Trial-wise Target Pour Amount v/s Actual Amount Poured

Fig. 6. Range of Actual Poured Amount v/s Target Amount to pour

C. Pouring with Multiple Inputs

Taking an example of the Latte customer order, the system
was executed 5 times and was successful 4 times. The failure
case is attributed to MoveIt planning errors and hardware
faults, as rebooting the system fixed these errors. Fig 7 shows
the output cup after a successful run of the system.

V. CHALLENGES

The system requires the end-effector to maintain an up-
right orientation throughout the motion to avoid spillage.
This constraint effectively removes 2 to 3 degrees of freedom
(DoF) from the robot’s control, leaving only 4 to 5 usable
DoF. Since a general 6-DoF task (involving both position
and orientation) typically requires at least 6 unconstrained
DoF, this severely limits the robot’s kinematic redundancy.

The operating environment further restricts the motion.
The robot works close to its base, at a low height on a com-
pact table. At these heights, some joints, particularly those
acting as shoulders or elbows, reach mechanical limits or



Fig. 7. Output Order - Latte

lose the ability to produce useful rotations. This reduces the
set of reachable poses and reduces the effective configuration
space of the robot.

In addition, the workspace is cluttered with virtual walls,
ingredient cups, and a weighing scale, increasing collision
likelihood and reducing the valid sampling space for mo-
tion planning. As a result, sampling-based planners, such
as RRT* and OMPL, often fail to find valid trajectories,
especially for constrained motions.

Due to these combined factors, only one specific spot on
the table allows the robot to successfully complete the entire
sequence: pick up the ingredient cup, move to the output
cup, pour while maintaining orientation, and return the cup.
This limitation could be mitigated in a larger or more open
workspace.

Alternatively, we were able to use a vertical shelf to add
find 3 input cup locations, which were much higher than the
operating platform. This, however, added another obstacle to
an already obstacle-dense environment. Fig 8 shows the new
system configuration that was used for the stretch goals

VI. CONCLUSION

We successfully developed and implemented an au-
tonomous coffee-making system using a Franka robotic
manipulator arm. The system demonstrated capabilities in
precise cup detection, accurate grasping, and controlled
pouring, effectively addressing the significant challenges
posed by a constrained workspace and stringent orientation
requirements. By employing a combination of computer
vision, constrained motion planning with MoveIt, and real-
time sensory feedback, we achieved pour accuracy within ±5
grams of the target amount, maintaining a pour success rate
of 88% despite the inherent complexities of the task.

This study emphasizes the viability and possible bene-
fits of robotic automation in food and beverage contexts,

Fig. 8. New positions for input cups

focusing on chances for greater efficiency, consistency, and
consumer satisfaction through tailored beverage preparation.
Furthermore, the architecture and methodologies proposed
herein are easily scalable to broader industrial applications,
including more complicated activities like cocktail prepara-
tion.

VII. FUTURE WORK

In the future, more positions on the shelf could be potential
input cup locations to create more complex coffee orders -
frappuccino, mochas, etc. Syrups and flavorings could also
be added to make a complete coffee order.

Further refinement of the pouring method and tuning
the lookup table to be more robust will help to create
a more reliable system. Other pouring methods, such as
reinforcement learning or trajectory optimization, can also
be explored.

To expand the project’s use case, the created system can
be adapted for several other beverage-based tasks, such as
tea, milkshakes, and cocktail mixing.
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